US009459916B2

a2 United States Patent

10) Patent No.: US 9,459,916 B2

Yokota 45) Date of Patent: Oct. 4, 2016

(54) SYSTEM AND METHOD FOR 8,713,571 B2* 4/2014 Banguero GOG6F 9/485
CONTROLLING EXECUTION OF JOBS 718/102
PERFORMED BY PLURAL INFORMATION 9,183,058 B2* 11/2015 Li coovvviiiiiiinins GOGF 9/5066
PROCESSING DEVICES 2006/0041644 Al* 2/2006 Henseler GO6F 28494258

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,

Kanagawa (JP)

(72) Inventor: Hiroki Yokota, Numazu (JP)
(73)

")

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 11 days.

@
(22)

Appl. No.: 14/537,422

Filed: Nov. 10, 2014

(65) Prior Publication Data

US 2015/0135188 Al May 14, 2015

(30) Foreign Application Priority Data

Nov. 13, 2013 (IP) wcoooooroeeeeeeeeecceen 2013-234585
(51) Int. CL
GOGF 9/44
GOGF 9/45
GOGF 9/48
U.S. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(52)
............. GO6F 9/4881 (2013.01); GOGF 8/314
(2013.01); GOG6F 8/10 (2013.01); GOGF 8/45
(2013.01)

(58) Field of Classification Search
CPC GOG6F 8/314; GOGF 8/45; GOGF 8/10;
GOG6F 8/456; GOG6F 9/5066

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,015,564 B1* 9/2011 Beyer GOG6F 9/505
718/100
8,312,037 B1* 11/2012 Bacthavachalu GOG6F 9/5066
707/769

(Continued)

FOREIGN PATENT DOCUMENTS

JP
JP

2001-249819
2006-65566

9/2001
3/2006

OTHER PUBLICATIONS

Du et al., “TaskFolder—Dynamic and Fine-Grained Workload
Consolidation for Mobile Devices”, Jun. 2016, ACM, pp. 137-149;
<http://dl.acm.org/citation.cfm?id=2906397& CFID=652367281
&CFTOKEN=33341923>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Ben C Wang
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

57 ABSTRACT

A system includes a plurality of information processing
devices and a management device configured to manage
execution of jobs performed by the plurality of information
processing devices. The management device detects any one
of the plurality of information processing devices which is
executing a first job, at a predetermined time, and deter-
mines whether a second information processing device
different from the first information processing device is able
to be allocated to a second job which is scheduled to use the
first information processing device being used by the first
job after the predetermined time, among the plurality of
information processing devices. The management device
modifies an execution schedule of the jobs such that the
second job is executed using the second information pro-
cessing device when it is determined that the second infor-
mation processing device is able to be allocated to the
second job.

7 Claims, 13 Drawing Sheets

AMOUNT OF
RESOURCE

T2

/51 /52

:@@j” o] Cegiru | | [compura- | [computa:

TONCLE T TOHAORE 1| FTONACRE?] | || TORNOLE | [TR KoL
(10BA) (0BA) (JOBA) EVPTY) || EMPTY)

:?:M: Fgﬁ | CavPaiA-1 | compura- 1| || computa- || compura.

ONNOLE FTION NODE 3 [TONNODE 4] | | | TION NODE 3| | TION NODE 4
;JOBB 3 MBA) (EM#Y) EMPTY) || (EMPTY)
RESOURCE MAP AT RESOURCEMAP AT RESOURGE MAP AT

TVETO TNET TVET2

US 9,459,916 B2

Page 2

(56)

2008/0256223

2010/0223618
2010/0318609

2011/0202924
2011/0289519
2012/0110590
2012/0110591

2012/0254881
2014/0157219

2014/0317716

2014/0337648

References Cited
U.S. PATENT DOCUMENTS
Al* 10/2008

Al*
Al*

9/2010
12/2010

Fu et al.
Lahiri

Al* 8/2011

Al* 11/2011

Al* 5/2012

Al* 5/2012

Al*
Al*

10/2012

6/2014 Ishikawa

Al* 10/2014

Al* 11/2014

GO6F 11/3604

...... 718/102
GO6F 17/5081

Hamamoto et al.

HO4L 63/0815

HO4L 67/1008

709/223

...... 718/102
GO6F 9/5072

709/205

GOG6F 9/4887

718/103

GOG6F 9/5027

719/328

GO6F 11/3604

718/104

718/104

716/115

726/9
713/322

Polo et al,

2014/0344813 Al*
2014/0344814 Al*

2015/0033233 Al*
2015/0052530 Al*
2015/0205639 Al*
2016/0187018 Al*

11/2014
11/2014

1/2015
2/2015
7/2015
6/2016

Jamjoom et al. 718/101
Jamjoom GOG6F 9/4881
718/101
Hosokawa GOG6F 9/4887
718/102
Jacobsonc...... GOG6F 9/46
718/102
Matsumoto GO6F 3/0604
718/104
Honma GO5B 15/02
700/276

OTHER PUBLICATIONS

* cited by examiner

Li et al.,, “MapReduce Parallel Programming Model—A State-of-
the-Art Survey”, Oct. 2015, Springer, pp. 832-866; <http://link.
springer.com/article/10.1007/s10766-015-0395-0>*
“Performance-Driven Task Co-Scheduling for
MapReduce Environments”, Apr. 2010 IEEE, pp. 373-380; <http://
ieeexplore.icee.org/stamp/stamp.jsp?tp=&arnumber=5488494> *

US 9,459,916 B2

Sheet 1 of 13

Oct. 4, 2016

U.S. Patent

JdON NOLL
“V1NdNOD

]

300N NOLL
“VLNdNOD |

]

JdON NOIL

-V1NdNOJ

—J

3JdON NOIL

-Y1NdWNOJ

JdON NOIL
-V1NdNOI

[

—

d3LNdNOD 13 TTvdVd

3dCN NOILL
-Y.LNdNOD

]

1

400N NOIL
-Y1NdINOD

]

300N NOIL
“Y1NdNOD

400N

400N NOIL
-V1NdINOD

07

LNINFOVNYIN

/| 300N 438N

1 Old

U.S. Patent

Oct. 4, 2016 Sheet 2 of 13 US 9,459,916 B2
3
MANAGEMENT NODE 35
é
731 FIRST
JOB SCHEDULER | SCHEDULE
DATA
/32 /33 4| STORING
GENERATING| | MODIFYING UPDATING | [(_UNIT__J
UNIT UNIT UNIT 36
5 SECOND
] . SCBE]DELE
JOB MANAGING {37 <TG
UNIT __UNIT_
A 4
RESOURCE |38
MANAGING UNIT
Vi
USER NODE
100
JOB
MANAGING
UNIT

U.S. Patent Oct. 4, 2016 Sheet 3 of 13 US 9,459,916 B2
TIME |COMPUTATION|COMPUTATION|COMPUTATION [COMPUTATION
NODE 1 NODE 2 NODE 3 NODE 4
T0 JOB A JOB A JOB A JOBB
T JOB A JOB A JOB A EMPTY
T2 EMPTY EMPTY EMPTY EMPTY

U.S. Patent Oct. 4, 2016 Sheet 4 of 13 US 9,459,916 B2

o
R =
L Lol —
Eas| | EAs
20 o0
a-=>Q- o= =
EZE 222
Ol o=l
= = T
Ol
| o] |22
Ll — L
Soe | 1552 | |8
o g2 | |g2a | |®
""" R N i oy 11} OFWL
nNlnivt
N —
A S EEY L
SRR N Rt | <w
----- NN S5l 155E | |
NN N> | A0 <C
\\\k\w\\\\ ~\\§ZO N 222
NN 58> |B8%| |2
! \ 3 X\\\ \‘E‘. ‘L——\-&'\ \: ; LL! E
N NN \?xl N N % g
‘§<LLIA:,‘ O<U—|/_\,
NEay REa<y | K
'EZ : \\220\ o
Nera=n ENeT==2
: N
NCE Y ROE..
()
L QT =
N Rt
Ba<y [55m
<O ?}§ZO =<C
sz=2Y [i8z= %
< > NOL Ty 1O o
NNEL RN T SOUP v L
w
30dN0S3Yd TN TS Q=
40 LNNOWY : Y R J | SDF
<CL] Nl
O oy ey |3
- 22m) RaSmy |W
Q) N==2QY R=29) | =
O § RO
LI N NG

US 9,459,916 B2

Sheet 5 of 13

Oct. 4, 2016

U.S. Patent

eL InIL ZLaniL VL aNIL OLINIL
1V d¥IN 308N0S3Y 1V dvIN 308N0S3Y 1V d¥IN 308N0S3Y 1V dvIN 308N0STY
A SIS DR N e Tl A
(wama) | ana) || I osor. 1 Dsor i1 ALdw3) v gor) - _(gg0or) (vgor)
7 JAON NOLL|€ JAONNOIL|| |k IAON NOIL{is IGONNOIL| |7 3AON NOILIEE JAONNOILA | 7 3AONNOLL] [£ JAONNOIL
YINdWOD | ¥VINdNOD “YIOdNOD -VINdINOD || | -YINdNOD | -YINdNOD 4| | VINNOD | F -VINdNOD
RS250535 55 Vo s S) IRNHRNBRRENE i o A
(Adhd) | (ALdw3) 7g0r) 1 (ogor “raon 1 wWaod 11T waod 1t vaon)
¢ 3AONNOLL{ L SAONNOIL| |2 ICONNOLLEL IAONNOILY [z 3AONNOILIE JAONNOIL | Iz 3AONNOLL] B JAONNOIL
YINdNOD | -YINdNOD YINdNOQD 4 -YINdNOD 1| | -YINdNOD i WINdINOD 4| | | ¥INdNOD | | VINdNOD
AR T ST Voo ot N Vo o o] YIS SN LS
eg/ 257 167 057/
P
wno
ocCc
=
20—
_ e

U.S. Patent Oct. 4, 2016 Sheet 6 of 13 US 9,459,916 B2

FIG.7

DETECT JOB WHOSE S
EXECUTION TIME HAS
EXCEEDED TIME LIMIT

4 SPECIFY NUMBER
MODIFY EXECUTION OF COMPUTATION | _qq
SCHEDULE TO s

SCHERULED TO
EXECUTON OF-JoB |rS5| ~ BEUSEDIN
\WHOSE EXECUTION ANOTHER JOB
TIME HAS
EXCEEDED TIME
CIVIT

S|
POSSIBLE TO
EXECUTE ANOTHER JOB
BY EMPTY COMPUTA-
TION ’I?\IODE

Yes

A 4

1 MODIEY EXECUTION
0 SCHEDULE SO AS

DETERMINE TO STOP TOALOCATE | 813
ExCOToNTETAs | | NGRRVTATON
EXCEEDED TIME LIMIT GSROTHER

»la
Ll Jal
Y

ND

n

U.S. Patent Oct. 4, 2016 Sheet 7 of 13 US 9,459,916 B2

FIG.8

LIMIT OF

EXECUT 'QN-.T.!M.E.-> OLONGABLE
=z 7 7 EMPTY
— TO(CURRENT |
TIME) TIME
FIG.9
. LIMTOF
. _EXEQU_T!QN__TJME- O[_ONGABLE
LL %
;I%’J . OB ' EMPTY
33| | / /;
%r,, = JOBB
TO(CURRENT |
TIVE) TIVE
FIG.10
LIMIT OF
«DECUTIONTIE {5 NON oy odp
] W/ | josB]
zZ5 PN/
g@ ///////% EMPTY }
— "TO(CURRENT:
TIME)

TIME

US 9,459,916 B2

Sheet 8 of 13

Oct. 4, 2016

U.S. Patent

Hzmm%oé

[
L

404N0S3y
40 LNNOWY

>
hl

Em/azgo «

JNIL zo:bomxm_ |

40 LINIT

L1 Old

U.S. Patent Oct. 4, 2016 Sheet 9 of 13 US 9,459,916 B2

FIG.12

\ 4
READ OUT EXECUTION o1
SCHEDULE AFTER SCHEDULED V
COMPLETION TIME OF JOB
BEING EXECUTED

!
GENERATE EXECUTION 23
SCHEDULE WHEN JOB BEING 1/
EXECUTED IS PROLONGED

END

US 9,459,916 B2

Sheet 10 of 13

Oct. 4, 2016

U.S. Patent

i
<

JNIL

(@I9NOTOHd IHY 9 ANY V SE0r
1NO3aXd JAILYNHALTY

)

3INA3IHIS NOI
(@IONOT0¥d SI v 9or)
ITNAIHIS NOILADIXT IAILYNETLTY

31NA3HIS NOILNOAXE INFHHND

1s, - -
')

J04N0S3H
40 INNONY

)

5501
) 5 W
HRIINOILASIXT ™
40 LININ
¢l Ol

U.S. Patent Oct.

FIG.14

4,2016 Sheet 11 of 13

DETECT JOB WHOSE
EXECUTION TIME HAS

531

EXCEEDED TIME LIMIT

A 4

MODIFY EXECUTION
SCHEDULE TO

PROLONG
EXECUTION OF JOB
WHOSE EXECUTION

TIME HAS

EXCEEDED TIME
LIMIT

IS THER
EXECUTION
SCHEDULE WHICH
AVOIDS STOPPING

EXECUTION

US 9,459,916 B2

A A

S41 |

UPDATE CURRENT
EXECUTION SCHEDULE WITH
EXECUTION SCHEDULE
WHICH AVOIDS STOPPING
EXECUTION

DETERMINE TO
STOP JOB
WHOSE
EXECUTION
TIME HAS
EXCEEDED
TIME LIMIT

$43
/

-
)
y

END

U.S. Patent Oct. 4, 2016 Sheet 12 of 13 US 9,459,916 B2

LLi
;A
l_
L L
m o
; %A
3! =
oy =
TTEN
=
s
=2
=5
SO
!
>
Lt
- A

FIG.15

304N0STY
30 INNOMY

US 9,459,916 B2

Sheet 13 of 13

Oct. 4, 2016

U.S. Patent

MHOMLIN OL
$ 30IA3a
6052 ><._n_“_w_o
1INN TO¥LINOD TINN
\ NOILYDINNININOD ERILE /1 TO4INOD Ndo
1162 - G162 5_&2_ 1052 >§_n_m_o 052”1 _
J [_
bl5e PR E T ioran
€152 m_>_+mo 5067 1052
:&@

US 9,459,916 B2

1
SYSTEM AND METHOD FOR
CONTROLLING EXECUTION OF JOBS
PERFORMED BY PLURAL INFORMATION
PROCESSING DEVICES

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority from the prior Japanese Patent Application No.
2013-234585 filed on Nov. 13, 2013, the entire contents of
which are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to system
and method for controlling execution of jobs performed by
plural information processing devices.

BACKGROUND

In a parallel computer such as a supercomputer, a sched-
uler is provided in a management system to allow the
scheduler to manage an execution schedule of a job. When
the scheduler generates the execution schedule of a job,
information on a time required to execute the job is used but
the time is estimated by a user who uses the parallel
computer. The time required to execute the job varies
depending on jobs, and the user predicts the time based on
an experience or estimates the time based on a past record.

However, in some cases, an actual execution time of a job
may be different from the estimated time. When the actual
execution time is shorter than the estimated time (e.g., the
job ends earlier than a scheduled time), there would be no
problem. However, when the actual execution time is longer
than the estimated time (e.g., the job does not end as
scheduled), there is a problem on how to deal with the job.

In the related art, a job which does not complete until a
scheduled time, is forcibly stopped in some cases. However,
for a case where the job would be completed with a minimal
extension of execution, the calculation performed until now
would go to waste if the execution of the job is stopped and
started all over again from the beginning.

Related techniques are disclosed in, for example, Japa-
nese Laid-Open Patent Publication No. 2001-249819 and
Japanese Laid-Open Patent Publication No. 2006-65566.

SUMMARY

According to an aspect of the invention, a system includes
a plurality of information processing devices and a manage-
ment device configured to manage execution of jobs per-
formed by the plurality of information processing devices.
The management device detects any one of the plurality of
information processing devices which is executing a first
job, at a predetermined time, and determines whether a
second information processing device different from the first
information processing device is able to be allocated to a
second job which is scheduled to use the first information
processing device being used by the first job after the
predetermined time, among the plurality of information
processing devices. The management device modifies an
execution schedule of the jobs such that the second job is
executed using the second information processing device
when it is determined that the second information processing
device is able to be allocated to the second job.

10

15

20

25

30

35

40

45

50

55

60

65

2

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims. It is to be
understood that both the foregoing general description and
the following detailed description are exemplary and
explanatory and are not restrictive of the invention, as
claimed.

According to an aspect, the job which has not ended until
the scheduled time may be continuously executed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating an example of a system,
according to an embodiment;

FIG. 2 is a diagram illustrating an example of a functional
configuration of a management node, according to an
embodiment;

FIG. 3 is a diagram illustrating an example of a functional
configuration of a user node, according to an embodiment;

FIG. 4 is a diagram illustrating an example of data stored
in a first schedule data storing unit, according to an embodi-
ment;

FIG. 5 is a diagram illustrating an example of a resource
map, according to an embodiment;

FIG. 6 is a diagram illustrating an example of a resource
map, according to an embodiment;

FIG. 7 is a diagram illustrating an example of an opera-
tional flowchart for main processing, according to an
embodiment;

FIG. 8 is a diagram illustrating an example of an execu-
tion schedule of jobs, according to an embodiment;

FIG. 9 is a diagram illustrating an example of an execu-
tion schedule of jobs, according to an embodiment;

FIG. 10 is a diagram illustrating an example of an
execution schedule of jobs, according to an embodiment;

FIG. 11 is a diagram illustrating an example of an
execution schedule of jobs, according to an embodiment;

FIG. 12 is a diagram illustrating an example of an
operational flowchart for a process which is executed before
an execution time exceeds a limit, according to an embodi-
ment;

FIG. 13 is a diagram illustrating an example of an
execution schedule of jobs, according to an embodiment;

FIG. 14 is a diagram illustrating an example of an
operational flowchart for a main process, according to an
embodiment;

FIG. 15 is a diagram illustrating an example of an
execution schedule of jobs, according to an embodiment;
and

FIG. 16 is a diagram illustrating an example of a con-
figuration of a computer, according to an embodiment.

DESCRIPTION OF EMBODIMENTS
First Embodiment

FIG. 1 is a diagram illustrating an example of a system,
according to an embodiment. A user node 1 manipulated by
a user and a management node 3 are connected to a network
5 which is, for example, the Internet. The management node
3 manages a plurality of computation nodes which operates
as a parallel computer 10. The user node 1 transmits an
execution request of a job to the management node 3. The
management node 3 performs scheduling of a job which is
designated by the execution request and causes a computa-
tion node to execute the job in accordance with the schedule.

US 9,459,916 B2

3

FIG. 2 is a diagram illustrating an example of a functional
configuration of a management node, according to an
embodiment. The management node 3 includes a job sched-
uler 31 which includes a generating unit 32, a modifying unit
33, and an updating unit 34, a first schedule data storing unit
35, a second schedule data storing unit 36, a job managing
unit 37, and a resource managing unit 38.

The job managing unit 37 receives, from the user node 1,
a job execution request which includes job identifying
information (for example, a job name), an amount of com-
puting resources used for the job (e.g., the number of
computation nodes and an amount of memory), and limit of
an execution time of a job, and causes the job scheduler 31
to perform scheduling of the job designated in the job
execution request. The generating unit 32 in the job sched-
uler 31 generates an execution schedule of a job based on
data included in the job execution request to store the
execution schedule in the first schedule data storing unit 35.
The modifying unit 33 modifies the execution schedule
stored in the first schedule data storing unit. The updating
unit 34 generates an alternative execution schedule of the
execution schedule stored in the first schedule data storing
unit 35 to store the alternative execution schedule in the
second schedule data storing unit 36. Further, the updating
unit 34 updates the execution schedule stored in the first
schedule data storing unit 35 with the execution schedule
stored in the second schedule data storing unit 36. The
resource managing unit 38 transmits data of a job (e.g., data
including the identification information of the job and limit
of the execution time of the job) that has been instructed to
be executed by the job managing unit 37, to the parallel
computer 10. Further, the resource managing unit 38 moni-
tors a state of the job which is being executed in the parallel
computer 10. Furthermore, the limit of the execution time is
determined for every job by the user. Descriptions about
handling of a job which exceeds the limit of the execution
time will be given in detail later.

In at least one computation node in the parallel computer
10, a process which manages allocation of the computation
nodes is activated. Further, the process controls a manage-
ment process which manages the execution of a job acti-
vated in each computation node so that the job is executed
in the computation node.

FIG. 3 is a diagram illustrating an example of a functional
configuration of a user node, according to an embodiment.
The user node 1 includes a job managing unit 100. The job
managing unit 100 receives, from the user, a job execution
instruction including job identitying information, an amount
of computing resources used for the job, and limit of an
execution time of the job. The job managing unit 100
generates a job execution request including data included in
the job execution instruction to transmit the job execution
request to the management node 3.

FIG. 4 is a diagram illustrating an example of data stored
in a first schedule data storing unit, according to an embodi-
ment. In the example of FIG. 4, identification information of
a job which uses each computation node is stored in the first
schedule data storing unit 35 in association with each of
times. When there is no job which uses a computation node,
data indicating “empty” is stored in the first schedule data
storing unit 35. The times include times in the past, current,
and future. Data associated with a time in the past is deleted
at a predetermined timing.

For example, when the data illustrated in FIG. 4 is stored
in the first schedule data storing unit 35, resource maps
which manage a computing resource of the parallel com-
puter 10 become the ones as illustrated in FIG. 5. In the

10

15

20

25

30

35

40

45

50

55

60

65

4

example of FIG. 5, a resource map 50 at a time 10, a
resource map 51 at a time T1, and a resource map 52 at a
time T2 are illustrated. The blocks in a resource map
illustrate computation nodes, and identification information
of a job which is executed by the computation node is
illustrated in a bracket. Further, on the upper half of FIG. 5,
a temporal change in the amount of resources (e.g., the
number of computation nodes in the present embodiment)
which are used by the job is illustrated. In the example of
FIG. 5, a job A which uses three computation nodes is
executed from the time TO to the time T2, and a job B which
uses one computation node is executed from the time TO to
the time T1.

For example, when an execution request of a job C is
received at the time T0, an execution schedule for the job C
is generated as illustrated on the upper half of FIG. 6. In an
example of FIG. 6, an execution schedule in which the job
C which uses four computation nodes is executed from the
time T2 to the time T3 is generated. In the embodiment, a
time corresponding to the limit of the execution time des-
ignated by the user and the computation node used for the
job are secured. Accordingly, in the example of FIG. 6, the
limit of the execution time which is designated for the job C
by the user corresponds to a time spanning from the time T2
to the time T3. Further, on the lower half of FIG. 6, a
resource map 50 at a time TO, a resource map 51 at a time
T1, a resource map 52 at a time T2, and a resource map 53
at a time T3 are illustrated.

Next, an operation of the management node 3 will be
described with reference to FIG. 7 to FIG. 11. The job
managing unit 37 detects a job whose execution time has
exceeded a time limit, based on the notification from the
resource managing unit 38 which monitors the state of the
job in the parallel computer 10 (step S1 of FIG. 7). The job
managing unit 37 notifies the identification information of
the job whose execution time has exceeded the time limit, to
the job scheduler 31.

The generating unit 32 in the job scheduler 31 determines
whether it is scheduled to execute another job other than the
job whose execution time has exceeded the time limit, in the
execution schedule which is stored in the first schedule data
storing unit 35 (step S3).

When it is determined that it is not scheduled to execute
another job (“NO” in step S3), a problem may not be caused
even when the execution of the job whose execution time
has exceeded the time limit is prolonged. Therefore, the
modifying unit 33 modifies the execution schedule stored in
the first schedule data storing unit 35 so as to prolong the
execution of the job whose execution time has exceeded the
time limit (step S5). Then, the process ends.

FIG. 8 is a diagram illustrating an example of an execu-
tion schedule, according to an embodiment. FIG. 8 illus-
trates an example of an execution schedule corresponding to
the “NO” route of step S3. In FIG. 8, the length in a vertical
direction indicates an amount (e.g., the number of compu-
tation nodes here) of resources and time elapses as it goes to
the right side. In the example of FIG. 8, the job A is being
executed from a certain time in the past to the time TO which
is a current time, and the job A exceeds the limit of the
execution time at the time TO. However, there is no job
which is scheduled to be executed other than the job A so
that problem may not be caused even when the execution of
the job A is prolonged.

In the meantime, when it is determined that it is scheduled
to execute another job (“YES” route of step S3 in FIG. 7),
the generating unit 32 determines whether there is another
job scheduled to use the computation node whose prolonged

US 9,459,916 B2

5

use is needed (e.g., a computation node used by the job
whose execution time has exceeded the time limit) in the
execution schedule stored in the first schedule data storing
unit 35 (step S7).

When it is determined that there is no other job scheduled
to use a computation node whose prolonged use is needed
(“NO” route of step S7), a problem may not be caused even
if the execution of the job whose execution time exceeds the
time limit is prolonged. Therefore, the modifying unit 33
modifies the execution schedule stored in the first schedule
data storing unit 35 so as to prolong the execution of the job
whose execution time has exceeded the time limit (step S5).
Then, the process ends.

FIG. 9 is a diagram illustrating an example of an execu-
tion schedule, according to an embodiment. FIG. 9 illus-
trates an example of an execution schedule corresponding to
the “NO” route of step S7 in FIG. 7. In the example of FIG.
9, the job A is being executed from a certain time in the past
to the time TO which is a current time, and the job A exceeds
the limit of the execution time at the time TO. Further, the job
B is scheduled to be executed from the time TO. However,
since the job B is not scheduled to use the computation node
which is used by the job A, even though the execution of the
job A is prolonged, the prolongation does not affect the
execution of the job B. Therefore, the execution of the job
A may be prolonged.

In the meantime, when it is determined that there is
another job which is scheduled to use a computation node
whose prolonged use is needed (“YES” route of step S7), the
generating unit 32 specifies the number of computation
nodes scheduled to be used in another job, based on the
execution schedule stored in the first schedule data storing
unit 35 (step S9).

The generating unit 32 determines whether another job
may be executed by an empty computation node in step S11.
Specifically, the generating unit 32 determines whether the
number of computation nodes, which is specified at step S9,
scheduled to be used in another job, exceeds the number of
empty computation nodes.

When it is determined that another job may be executed
by the empty computation nodes (“YES” route of step S11),
the modifying unit 33 modifies the execution schedule
stored in the first schedule data storing unit 35 so as to
allocate an empty computation node to another job (step
S13). Then, the process ends.

FIG. 10 is a diagram illustrating an example of an
execution schedule, according to an embodiment. FIG. 10
illustrates an example of an execution schedule correspond-
ing to the “YES” route of step S11. In the example of FIG.
10, the job A is being executed from a certain time in the past
to the time TO which is a current time, and the job A exceeds
the limit of the execution time at the time TO. Further, the job
B is scheduled to be executed at the time TO. Since the job
B is scheduled to execute the job using the computation node
which will be used by the job A, the execution of the job A
may not be prolonged in this state. However, the job B may
be executed by the empty computation node. Therefore, as
illustrated in FIG. 11, the execution schedule of the job is
modified so as to allocate the empty computation node to the
job B. In the example of FIG. 11, although the job B is
executed from the time TO like the example of FIG. 10, the
job B does not use the computation node which is used by
the job A. Therefore, the execution of the job A may be
prolonged since it does not affect the execution of the job B.

Referring back to the description of FIG. 7, when another
job cannot be executed by the empty computation node
(“NO” route of step S11), the generating unit 32 determines

20

25

35

40

45

6

to stop the job whose execution time has exceeded the time
limit (step S15). Then, the process ends. In the case, the
computation node which executes the job has information on
a limit of the execution time, and when the executing time
exceeds the time limit, the computation node stops execu-
tion of the job.

By performing the process as described above, even
though the execution time of the job exceeds the time limit,
the job may be continuously executed without affecting the
execution of another job. Therefore, the number of cases
where a job is forcibly stopped due to an incompletion of the
job within a scheduled time may be reduced. Further, since
the empty computation node is used, an operating ratio of
the computation node may be improved.

Second Embodiment

Next, a second embodiment will be described. In the
second embodiment, before the execution time of a job
exceeds the time limit, the job scheduler 31 generates an
alternative execution schedule in advance. A process in
which the job scheduler 31 generates the alternative execu-
tion schedule will be described with reference to FIG. 12 and
FIG. 13. The processing is performed, for example, at a
stage where the scheduling of a job which is being executed
by the job scheduler 31 is completed.

First, an updating unit 34 in the job scheduler 31 reads out
an execution schedule to be executed after a scheduled
completion time of the job which is being executed (e.g., a
time when the execution time of the job which is being
executed reaches the time limit), from the first schedule data
storing unit 35 (step S21 of FIG. 12).

The updating unit 34 generates an execution schedule
when the job which is being executed is prolonged from the
read execution schedule, and stores the execution schedule
in the second schedule data storing unit 36 (step S23). Then,
the process ends.

At step S23, for example, an execution schedule as
illustrated in FIG. 13 is generated. In an example of FIG. 13,
ajob A, ajob B, and a job C are being executed at the current
time and the jobs are executed until a certain time in the
future, and a job D is scheduled to be executed after the
certain time. In the current execution schedule, the job D is
executed using a computation node used by the job A. In this
example, at step S23, two execution schedules are generated
as alternative execution schedules. Specifically, two execu-
tion schedules include an execution schedule by which the
job D is executed using a computation node which is used
for the job B when the job A is prolonged and an execution
schedule by which the job D is executed using a computation
node which is used by the job C when the job A and the job
B are prolonged.

Since it takes time to perform a process of creating an
execution schedule, it is possible to promptly cope with the
change of the execution schedule when an execution sched-
ule is generated in advance.

Next, a process performed by a management node 3 when
the executing time of a job exceeds the time limit will be
described with reference to FIG. 14 and FIG. 15. First, the
job managing unit 37 detects whether an execution time of
a job exceeds the time, based on the notification from the
resource managing unit 38 which monitors the state of the
job in the parallel computer 10 (step S31 of FIG. 14). The
job managing unit 37 notifies the identification information
of a job whose execution time has exceeded the time limit,
to the job scheduler 31.

US 9,459,916 B2

7

The generating unit 32 in the job scheduler 31 determines
whether it is scheduled to execute another job other than the
job whose execution time has exceeded the time limit, in the
execution schedule stored in the first schedule data storing
unit 35 (step S33).

When it is determined that it is not scheduled to execute
another job (“NO” route of step S33), a problem may not be
caused even when the execution of the job whose execution
time has exceeded the time limit is prolonged. Therefore, the
modifying unit 33 modifies the execution schedule stored in
the first schedule data storing unit 35 so as to extend the
execution of the job whose execution time has exceeded the
time limit (step S35). Then, the process ends.

In the meantime, when it is determined that it is scheduled
to execute another job (“YES” route of step S33), the
generating unit 32 determines whether there is another job
which is scheduled to use the computation node (e.g., a
computation node which is being used by the job of which
the execution time exceeds the time) whose prolonged use is
needed, in the execution schedule stored in the first schedule
data storing unit 35 (step S37).

When it is determined that there is no other job scheduled
to use a computation node whose prolonged use is needed
(“NO” route of step S37), a problem may not be caused even
when the execution of the job whose execution time has
exceeded the time limit is prolonged. Therefore, the modi-
fying unit 33 modifies the execution schedule stored in the
first schedule data storing unit 35 so as to extend the
execution of the job whose execution time has exceeded the
time limit (step S35). Then, the process ends.

In contrast, when it is determined that there is another job
which is scheduled to use a computation node whose pro-
longed use is needed (“YES” route of step S37), the gen-
erating unit 32 requests the updating unit 34 to perform the
processing. In response to the request from the generating
unit 32, the updating unit 34 determines whether there is an
execution schedule which may avoid stopping execution of
the job whose execution time has exceeded the time limit,
among the execution schedules which are stored in the
second schedule data storing unit 36 (step S39).

When there is an execution schedule which may avoid
stopping of the execution (“YES” route of step S39), the
updating unit 34 updates the execution schedule stored in the
first schedule data storing unit 35 with an execution schedule
which may avoid stopping the execution (step S41). Then,
the process ends.

For example, a situation as illustrated in FIG. 15 is
assumed. An example of FIG. 15 is a situation where the
time elapses from the situation illustrated in FIG. 13 and
then execution times of the job A, the job B, and the job C
reach the time limit. In this situation, the job A is being
executed and stopping of execution of the job A is unavoid-
able according to the current execution schedule. Therefore,
by the processing of step S41, one of the two alternative
execution schedules which executes the job D using the
computation node which was used for the job B is adopted,
and the execution schedule is updated. Further, in the case of
the example of FIG. 15, stopping of the execution of the job
A is avoidable by adopting the other one of the two alter-
native execution schedules.

Returning to the description of FIG. 14, when there is no
execution schedule which may avoid the executing stop
(“NO” route of step S39), the generating unit 32 determines
to stop the job whose execution time has exceeded the time
limit (step S43). Then, the process ends. In the case, since
the computation node which executes the job has informa-

25

30

40

45

55

8

tion on a limit of the execution time, the computation node
is able to stop execution of the job when the execution time
exceeds the time limit.

When the process as described above is performed, the
execution schedule does not need to be generated again in a
stage when the execution time of the job actually exceeds the
time limit, thereby allowing execution of a next job to be
promptly started.

The embodiments of the present disclosure have been
described above, but the present disclosure is not limited
thereto. For example, the functional configuration of the user
node 1 and the management node 3 which have been
described above may not match an actual configuration of a
program module in some cases.

Further, a configuration of each table described above is
an example, and it is not necessarily the case that the
configuration as described above is required. Further, in the
process flow, if the process result is not changed, a proce-
dural sequence of the process may be changed. Further, the
processes may be performed in parallel.

Further, in the example described above, the computation
node which executes the job has information on a limit of the
execution time so that when the executing time exceeds the
time limit, the computation node may stop the execution of
the job. However, the job scheduler 31 may transmit a
stopping request to stop the job to the computation node
through a resource managing unit 38.

Further, the user node 1, the management node 3, and the
computation node described above may be each a computer
device. In the computer device, as illustrated in FIG. 16, a
memory 2501, a central processing unit (CPU) 2503, a hard
disk drive (HDD) 2505, a display control unit 2507 which is
connected to a display device 2509, a drive device 2513 for
a removable disk 2511, an input device 2515, and a com-
munication control unit 2517 for being connected with a
network, may be connected to each other by a bus 2519. An
operating system (OS) and an application program which
performs a process in the embodiment may be stored in the
HDD 2505 and read out from the HDD 2505 to the memory
2501 when being executed by the CPU 2503. The CPU 2503
controls the display control unit 2507, the communication
control unit 2517, and the drive device 2513 in accordance
with the processing contents of the application program to
perform a predetermined operation. Further, data which is
being processed is mainly stored in the memory 2501, but
may be stored in the HDD 2505. In the exemplary embodi-
ment of the present disclosure, the application program
which performs the above-described processing is stored in
the computer readable removable disk 2511 to be distributed
and installed from the drive device 2513 into the HDD 2505.
The application program may be installed in the HDD 2505
via the network such as the Internet and the communication
control unit 2517. Such a computer device implements
various functions as described above through the intimate
cooperation of hardware, such as the CPU 2503 and the
memory 2501 which are described above, and a program,
such as the OS and the application program.

However, the computation node may be a CPU or a CPU
core.

The embodiment of the present invention described above
will be summarized as follows.

An information processing system according to a first
aspect of the embodiment includes (A) a plurality of infor-
mation processing devices and (B) a management device
which manages the execution of jobs by the plurality of
information processing devices. The management device
described above includes (bl) a detecting unit (e.g, a job

US 9,459,916 B2

9

managing unit 37) which detects any one of the plurality of
information processing devices which is executing a first
job, at a predetermined time, (b2) a determining unit (e.g.,
a generating unit 32) which determines whether a second
information processing device different from the first infor-
mation processing device is able to be allocated to a second
job which is scheduled to use the first information process-
ing device being used by the first job after the predetermined
time, among the plurality of information processing devices,
and (b3) a modifying unit (e.g., a modifying unit 33) which
when the determining unit determines that the second infor-
mation processing device is able to be allocated to the
second job, modifies an execution schedule of jobs such that
the second job is executed using the second information
processing device.

By doing this, even though the execution time of the job
exceeds the time limit, the job may be continuously executed
without affecting the execution of another job.

Further, the management device described above may
further include (b4) an updating unit (e.g., the updating unit
34) which generates an execution schedule before the pre-
determined time when the execution of the first job is
prolonged, to store the execution schedule in a data storing
unit, and when it is determined that the first job is executed
at the predetermined time, updates the execution schedule to
a prolonged execution schedule in which the execution
schedule of the first job stored in the data storing unit is
prolonged. Since it takes time to perform the process of
generating an execution schedule, when the process is
performed when the execution time of the first job exceeds
the time limit, starting of the execution of the second job
may be delayed in some cases. Controlling an execution
schedule as described above allows the execution schedule
to be prepared in advance, thereby suppressing the delay of
the executing start of the second job.

Further, the modifying unit described above may (b31)
modify the execution schedule to prolong the execution of
the first job when there is no schedule to execute a job other
than the first job. This allows a job whose execution time has
exceeded the time limit to be continuously executed when
there is no problem in prolonging the execution of the job.

Further, the modifying unit described above may (b32)
stop the execution of the first job when it is determined that
the second information processing device is not able to be
allocated to the second job. This allows the second job to be
executed as scheduled.

A control method according to a second aspect of the
embodiment is a control method of an information process-
ing system which includes a plurality of information pro-
cessing devices and a management device which manages
the execution of jobs by the plurality of information pro-
cessing devices. The control method includes processings
of, by the management device described above, (C) detect-
ing any one of the plurality of information processing
devices which is executing a first job, at a predetermined
time, (D) determining whether a second information pro-
cessing device different from the first information process-
ing device is able to be allocated to a second job which is
scheduled to use the first information processing device
being used by the first job after the predetermined time,
among the plurality of information processing devices, and
(E) modifying, when it is determined that the second infor-
mation processing device is able to be allocated to the
second job, an execution schedule of the jobs such that the
second job is executed using the second information pro-
cessing device.

20

40

45

50

60

65

10

Further, a program which allows a computer to execute
the process by the above method may be generated and the
program is stored in a computer readable storing medium
such as a flexible disk, a CD-ROM, an optical magnetic disk,
a semiconductor memory, or a hard disk or a storing device.
Further, an intermediate processing result is temporarily
stored in a storing device such as a main memory.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a illustrating of the
superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. A system, comprising:

a plurality of information processing devices; and

a management device having a memory storing execut-

able instructions configured to manage execution of

jobs by the plurality of information processing devices,

wherein the management device is configured to:

detect, at a predetermined time, a first information
processing device from the plurality of information
processing devices which is executing a first job
whose execution time exceeds a time limit;

determine whether a second information processing
device different from the first information processing
device and among the plurality of information pro-
cessing devices may be allocated to a second job
which is scheduled to be executed by the first infor-
mation processing device being used by the first job
after the predetermined time;

modify an execution schedule of the jobs such that the
second job is executed by the second information
processing device when it is determined that the
second information processing device may be allo-
cated to the second job;

generate an execution schedule before the predeter-
mined time when the execution of the first job is
prolonged;

store the execution schedule in a data storing unit; and

update the execution schedule to a prolonged execution
schedule that is obtained by prolonging the execu-
tion schedule of the first job stored in the data storing
unit when the first job being executed is detected at
the predetermined time.

2. The system of claim 1, wherein

the management device is configured to modify the

execution schedule by prolonging the execution of the
first job when there is no schedule to execute a job other
than the first job for the first information processing
device.

3. The system of claim 1, wherein

the management device is configured to stop the execu-

tion of the first job when it is determined that the
second information processing device may not be allo-
cated to the second job.

4. A method performed by a system including a plurality
of information processing devices and a management
device, the management device managing execution of jobs
by the plurality of information processing devices, the
method comprising:

US 9,459,916 B2

11

detecting, by the management device at a predetermined
time, a first information processing device from the
plurality of information processing devices which is
executing a first job whose execution time exceeds a
time limit;

determining whether a second information processing
device different from the first information processing
device and among the plurality of information process-
ing devices may be allocated to a second job which is
scheduled to be executed by the first information pro-
cessing device being used by the first job after the
predetermined time;

modifying an execution schedule of the jobs such that the
second job is executed by the second information
processing device when it is determined that the second
information processing device may be allocated to the
second job;

generating an execution schedule before the predeter-
mined time when the execution of the first job is
prolonged;

storing the execution schedule in a data storing unit; and

updating the execution schedule to a prolonged execution
schedule that is obtained by prolonging the execution
schedule of the first job stored in the data storing unit
when the first job being executed is detected at the
predetermined time.

5. The method of claim 4, further comprising:

modifying the execution schedule by prolonging the
execution of the first job when there is no schedule to
execute a job other than the first job for the first
information processing device.

15

20

25

30

12

6. The method of claim 4, further comprising:

stopping the execution of the first job when it is deter-
mined that the second information processing device
may not be allocated to the second job.

7. A non-transitory, computer-readable recording medium
having stored therein a program for causing a computer to
execute a process, the computer being included in a man-
agement device managing execution of jobs by the plurality
of information processing devices, the process comprising:

detecting, at a predetermined time, a first information

processing device from the plurality of information
processing devices which is executing a first job whose
execution time exceeds a time limit;

determining whether a second information processing

device different from the first information processing
device and among the plurality of information process-
ing devices may be allocated to a second job which is
scheduled to be executed by the first information pro-
cessing device being used by the first job after the
predetermined time;

modifying an execution schedule of the jobs such that the

second job is executed by the second information
processing device when it is determined that the second
information processing device may be allocated to the
second job;

generating an execution schedule before the predeter-

mined time when the execution of the first job is
prolonged;

storing the execution schedule in a data storing unit; and

updating the execution schedule to a prolonged execution

schedule that is obtained by prolonging the execution
schedule of the first job stored in the data storing unit
when the first job being executed is detected at the
predetermined time.

#* #* #* #* #*

